Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems

نویسندگان

  • Simone Paolo Ponzetto
  • Roberto Navigli
چکیده

One of the main obstacles to highperformance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic relations, simple knowledge-lean disambiguation algorithms compete with state-of-the-art supervisedWSD systems in a coarse-grained all-words setting and outperform them on gold-standard domain-specific datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Word Sense Induction and Disambiguation Rivaling Supervised Methods

Word Sense Disambiguation (WSD) aims to determine the meaning of a word in context and successful approaches are known to benefit many applications in Natural Language Processing. Although, supervised learning has been shown to provide superior WSD performance, current sense-annotated corpora do not contain a sufficient number of instances per word type to train supervised systems for all words...

متن کامل

USP-IBM-1 and USP-IBM-2: The ILP-based Systems for Lexical Sample WSD in SemEval-2007

We describe two systems participating of the English Lexical Sample task in SemEval2007. The systems make use of Inductive Logic Programming for supervised learning in two different ways: (a) to build Word Sense Disambiguation (WSD) models from a rich set of background knowledge sources; and (b) to build interesting features from the same knowledge sources, which are then used by a standard mod...

متن کامل

Semi-Supervised Word Sense Disambiguation Using Word Embeddings in General and Specific Domains

One of the weaknesses of current supervised word sense disambiguation (WSD) systems is that they only treat a word as a discrete entity. However, a continuous-space representation of words (word embeddings) can provide valuable information and thus improve generalization accuracy. Since word embeddings are typically obtained from unlabeled data using unsupervised methods, this method can be see...

متن کامل

Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Comparison

Word Sense Disambiguation is a longstanding task in Natural Language Processing, lying at the core of human language understanding. However, the evaluation of automatic systems has been problematic, mainly due to the lack of a reliable evaluation framework. In this paper we develop a unified evaluation framework and analyze the performance of various Word Sense Disambiguation systems in a fair ...

متن کامل

Hierarchical Decision Lists for Word Sense Disambiguation

This paper describes a supervised algorithm for word sense disambigua-tion based on hierarchies of decision lists. This algorithm supports a useful degree of conditional branching while minimizing the training data fragmentation typical of decision trees. Classiications are based on a rich set of collocational, morphological and syntactic contextual features, extracted automatically from traini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010